290 research outputs found

    Generalized poisson brackets and nonlinear Liapunov stability application to reduces mhd

    Get PDF
    A method is presented for obtaining Liapunov functionals (LF) and proving nonlinear stability. The method uses the generalized Poisson bracket (GPB) formulation of Hamiltonian dynamics. As an illustration, certain stationary solutions of ideal reduced MHD (RMHD) are shown to be nonlinearly stable. This includes Grad-Shafranov and Alfven solutions

    Neural fate of seen and unseen faces in visuospatial neglect: A combined event-related functional MRI and event-related potential study

    Get PDF
    This is a post print version of the article. The official published version can be obtained from the link below.To compare neural activity produced by visual events that escape or reach conscious awareness, we used event-related MRI and evoked potentials in a patient who had neglect and extinction after focal right parietal damage, but intact visual fields. This neurological disorder entails a loss of awareness for stimuli in the field contralateral to a brain lesion when stimuli are simultaneously presented on the ipsilateral side, even though early visual areas may be intact, and single contralateral stimuli may still be perceived. Functional MRI and event-related potential study were performed during a task where faces or shapes appeared in the right, left, or both fields. Unilateral stimuli produced normal responses in V1 and extrastriate areas. In bilateral events, left faces that were not perceived still activated right V1 and inferior temporal cortex and evoked nonsignificantly reduced N1 potentials, with preserved face-specific negative potentials at 170 ms. When left faces were perceived, the same stimuli produced greater activity in a distributed network of areas including right V1 and cuneus, bilateral fusiform gyri, and left parietal cortex. Also, effective connectivity between visual, parietal, and frontal areas increased during perception of faces. These results suggest that activity can occur in V1 and ventral temporal cortex without awareness, whereas coupling with dorsal parietal and frontal areas may be critical for such activity to afford conscious perception. Right parietal damage may cause a loss of awareness for contralateral (left) sensory inputs, such as hemispatial neglect and extinction (1–3). Visual extinction is the failure to perceive a stimulus in the contralesional field when presented together with an ipsilesional stimulus (bilateral simultaneous stimulation, BSS), even though occipital visual areas are intact and unilateral contralesional stimuli can be perceived when presented alone. It reflects a deficit of spatial attention toward the contralesional side, excluding left inputs from awareness in the presence of competing stimuli (2, 3). Spatial attention involves a complex neural network centered on the right parietal lobe (4, 5), but how parietal and related areas interact with sensory processing in distant cortices is largely unknown. Here we combined event-related functional MRI (fMRI) and event-related potentials (ERPs) to study the regional pattern and temporal course of brain activity produced by seen and unseen stimuli in a patient with chronic neglect and extinction caused by parietal damage. In keeping with intact early visual areas in such patients, behavioral studies suggest that some residual processing may still occur for contralesional stimuli without attention, or without awareness, including “preattentive” grouping (e.g., refs. 6 and 7) and semantic priming (e.g., ref. 8). It has been speculated (3, 9) that such effects might relate to separate cortical visual streams, with temporal areas extracting object features for identification, and parietal areas encoding spatial locations and parameters for action (10). Because neglect and extinction follow parietal damage, residual perceptual and semantic processing still might occur in occipital and temporal cortex without awareness, in the absence of normal integration with concomitant processing in parietal regions. Our study tested this hypothesis by using event-related imaging and electrophysiology measures, which are widely used to study mechanisms of normal attention (11, 12). There have been few imaging (e.g., ref. 13) or ERP (e.g., ref. 14) studies in neglect, and most examined activity at rest or during passive unilateral visual stimulation, rather than in relation to awareness or extinction on bilateral stimulation. However, a recent ERP study (15) found signals evoked by perceived, but not extinguished, visual stimuli in a parietal patient. By contrast, functional imaging in another patient (16) showed activation of striate cortex by extinguished stimuli, although severe extinction on all bilateral stimuli precluded any comparison with normal perception. In our patient we used both fMRI and ERPs during a similar extinction task to determine the neural correlates of two critical conditions: (i) when contralesional stimuli are extinguished, and (ii) when the same stimuli are seen. Stimulus presentation was arranged so as to obtain a balanced number of extinguished and seen contralesional events across all bilateral trials. Like Rees et al. (16), we used face stimuli to exploit previous knowledge that face processing activates fusiform areas in temporal cortex (e.g., refs. 17 and 18), and elicits characteristic potentials 170–200 ms after stimulus onset (e.g., refs. 19–21) in addition to other visual components such as P1 and N1 (e.g., ref. 11). We reasoned that such responses might help trace the neural fate of contralesional stimuli (seen or extinguished) at both early and later processing stages in the visual system

    Free streaming in mixed dark matter

    Full text link
    Free streaming in a \emph{mixture} of collisionless non-relativistic dark matter (DM) particles is studied by implementing methods from the theory of multicomponent plasmas. The mixture includes Fermionic, condensed and non condensed Bosonic particles decoupling in equilibrium while relativistic, heavy non-relativistic thermal relics (WIMPs), and sterile neutrinos that decouple \emph{out of equilibrium} when they are relativistic. The free-streaming length λfs\lambda_{fs} is obtained from the marginal zero of the gravitational polarization function, which separates short wavelength Landau-damped from long wavelength Jeans-unstable \emph{collective} modes. At redshift zz we find 1λfs2(z)=1(1+z)[0.071kpc]2aνagd,a2/3(ma/keV)2Ia \frac{1}{\lambda^2_{fs}(z)}= \frac{1}{(1+z)} \big[\frac{0.071}{\textrm{kpc}} \big]^2 \sum_{a}\nu_a g^{2/3}_{d,a}({m_a}/{\mathrm{keV}})^2 I_a ,where 0νa10\leq \nu_a \leq 1 are the \emph{fractions} of the respective DM components of mass mam_a that decouple when the effective number of ultrarelativistic degrees of freedom is gd,ag_{d,a}, and IaI_a only depend on the distribution functions at decoupling, given explicitly in all cases. If sterile neutrinos produced either resonantly or non-resonantly that decouple near the QCD scale are the \emph{only} DM component,we find λfs(0)7kpc(keV/m)\lambda_{fs}(0) \simeq 7 \mathrm{kpc} (\mathrm{keV}/m) (non-resonant), λfs(0)1.73kpc(keV/m)\lambda_{fs}(0) \simeq 1.73 \mathrm{kpc} (\mathrm{keV}/m) (resonant).If WIMPs with mwimp100GeVm_{wimp} \gtrsim 100 \mathrm{GeV} decoupling at Td10MeVT_d \gtrsim 10 \mathrm{MeV} are present in the mixture with νwimp1012\nu_{wimp} \gg 10^{-12},λfs(0)6.5×103pc\lambda_{fs}(0) \lesssim 6.5 \times 10^{-3} \mathrm{pc} is \emph{dominated} by CDM. If a Bose Einstein condensate is a DM component its free streaming length is consistent with CDM because of the infrared enhancement of the distribution function.Comment: 19 pages, 2 figures. More discussions same conclusions and results. Version to appear in Phys. Rev.

    Two-dimensional plasma expansion in a magnetic nozzle: Separation due to electron inertia

    Get PDF
    A previous axisymmetric model of the supersonic expansion of a collisionless, hot plasma in a divergent magnetic nozzle is extended here in order to include electron-inertia effects. Up to dominant order on all components of the electron velocity, electron momentum equations still reduce to three conservation laws. Electron inertia leads to outward electron separation from the magnetic streamtubes. The progressive plasma filling of the adjacent vacuum region is consistent with electron-inertia being part of finite electron Larmor radius effects, which increase downstream and eventually demagnetize the plasma. Current ambipolarity is not fulfilled and ion separation can be either outwards or inwards of magnetic streamtubes, depending on their magnetization. Electron separation penalizes slightly the plume efficiency and is larger for plasma beams injected with large pressure gradients. An alternative nonzero electron-inertia model [E. Hooper, J. Propul. Power 9, 757 (1993)] based on cold plasmas and current ambipolarity, which predicts inwards electron separation, is discussed critically. A possible competition of the gyroviscous force with electron-inertia effects is commented briefly

    Understanding the effect of sheared flow on microinstabilities

    Full text link
    The competition between the drive and stabilization of plasma microinstabilities by sheared flow is investigated, focusing on the ion temperature gradient mode. Using a twisting mode representation in sheared slab geometry, the characteristic equations have been formulated for a dissipative fluid model, developed rigorously from the gyrokinetic equation. They clearly show that perpendicular flow shear convects perturbations along the field at a speed we denote by McsMc_s (where csc_s is the sound speed), whilst parallel flow shear enters as an instability driving term analogous to the usual temperature and density gradient effects. For sufficiently strong perpendicular flow shear, M>1M >1, the propagation of the system characteristics is unidirectional and no unstable eigenmodes may form. Perturbations are swept along the field, to be ultimately dissipated as they are sheared ever more strongly. Numerical studies of the equations also reveal the existence of stable regions when M<1M < 1, where the driving terms conflict. However, in both cases transitory perturbations exist, which could attain substantial amplitudes before decaying. Indeed, for M1M \gg 1, they are shown to exponentiate M\sqrt{M} times. This may provide a subcritical route to turbulence in tokamaks.Comment: minor revisions; accepted to PPC

    Local and global Fokker-Planck neoclassical calculations showing flow and bootstrap current modification in a pedestal

    Full text link
    In transport barriers, particularly H-mode edge pedestals, radial scale lengths can become comparable to the ion orbit width, causing neoclassical physics to become radially nonlocal. In this work, the resulting changes to neoclassical flow and current are examined both analytically and numerically. Steep density gradients are considered, with scale lengths comparable to the poloidal ion gyroradius, together with strong radial electric fields sufficient to electrostatically confine the ions. Attention is restricted to relatively weak ion temperature gradients (but permitting arbitrary electron temperature gradients), since in this limit a delta-f (small departures from a Maxwellian distribution) rather than full-f approach is justified. This assumption is in fact consistent with measured inter-ELM H-Mode edge pedestal density and ion temperature profiles in many present experiments, and is expected to be increasingly valid in future lower collisionality experiments. In the numerical analysis, the distribution function and Rosenbluth potentials are solved for simultaneously, allowing use of the exact field term in the linearized Fokker-Planck collision operator. In the pedestal, the parallel and poloidal flows are found to deviate strongly from the best available conventional neoclassical prediction, with large poloidal variation of a different form than in the local theory. These predicted effects may be observable experimentally. In the local limit, the Sauter bootstrap current formulae appear accurate at low collisionality, but they can overestimate the bootstrap current near the plateau regime. In the pedestal ordering, ion contributions to the bootstrap and Pfirsch-Schluter currents are also modified

    YAP1 withdrawal in hepatoblastoma drives therapeutic differentiation of tumor cells to functional hepatocyte-like cells

    Get PDF
    BACKGROUND and AIMS: Despite surgical and chemotherapeutic advances, the five-year survival rate for Stage IV Hepatoblastoma (HB), the predominant pediatric liver tumor, remains at 27%. YAP1 and beta-Catenin co-activation occurs in 80% of children\u27s HB; however, a lack of conditional genetic models precludes tumor maintenance exploration. Thus, the need for a targeted therapy remains unmet. Given the predominance of YAP1 and beta-Catenin activation in HB, we sought to evaluate YAP1 as a therapeutic target in HB. APPROACH and RESULTS: We engineered the first conditional HB murine model using hydrodynamic injection to deliver transposon plasmids encoding inducible YAP1(S127A) , constitutive beta-Catenin(DelN90) , and a luciferase reporter to murine liver. Tumor regression was evaluated using bioluminescent imaging, and tumor landscape characterized using RNA and ATAC sequencing, and DNA foot-printing. Here we show that YAP1(S127A) withdrawal mediates \u3e90% tumor regression with survival for 230+ days in mice. YAP1 (S127A) withdrawal promotes apoptosis in a subset of tumor cells and in remaining cells induces a cell fate switch driving therapeutic differentiation of HB tumors into Ki-67 negative hbHep cells with hepatocyte-like morphology and mature hepatocyte gene expression. YAP1 (S127A) withdrawal drives formation of hbHeps by modulating liver differentiation transcription factor (TF) occupancy. Indeed, tumor-derived hbHeps, consistent with their reprogrammed transcriptional landscape, regain partial hepatocyte function and rescue liver damage in mice. CONCLUSIONS: YAP1(S127A) withdrawal, without silencing oncogenic beta-Catenin, significantly regresses hepatoblastoma, providing the first in vivo data to support YAP1 as a therapeutic target for HB. YAP1(S127A) withdrawal alone sufficiently drives long-term regression in hepatoblastoma because it promotes cell death in a subset of tumor cells and modulates transcription factor occupancy to reverse the fate of residual tumor cells to mimic functional hepatocytes

    Dual-Task Processing With Identical Stimulus and Response Sets: Assessing the Importance of Task Representation in Dual-Task Interference

    Get PDF
    Limitations in our ability to produce two responses at the same time – that is, dual-task interference – are typically measured by comparing performance when two stimuli are presented and two responses are made in close temporal proximity to when a single stimulus is presented and a single response is made. While straightforward, this approach leaves open multiple possible sources for observed differences. For example, on dual-task trials, it is typically necessary to identify two stimuli nearly simultaneously, whereas on typical single-task trials, only one stimulus is presented at a time. These processes are different from selecting and producing two distinct responses and complicate the interpretation of dual- and single-task performance differences. Ideally, performance when two tasks are executed should be compared to conditions in which only a single task is executed, while holding constant all other stimuli, response, and control processing. We introduce an alternative dual-task procedure designed to approach this ideal. It holds stimulus processing constant while manipulating the number of “tasks.” Participants produced unimanual or bimanual responses to pairs of stimuli. For one set of stimuli (two-task set), the mappings were organized so an image of a face and a building were mapped to particular responses (including no response) on the left or right hands. For the other set of stimuli (one-task set), the stimuli indicated the same set of responses, but there was not a one-to-one mapping between the individual stimuli and responses. Instead, each stimulus pair had to be considered together to determine the appropriate unimanual or bimanual response. While the stimulus pairs were highly similar and the responses identical across the two conditions, performance was strikingly different. For the two-task set condition, bimanual responses were made more slowly than unimanual responses, reflecting typical dual-task interference, whereas for the one-task set, unimanual responses were made more slowly than bimanual. These findings indicate that dual-task costs occur, at least in part, because of the interfering effects of task representation rather than simply the additional stimulus, response, or other processing typically required on dual-task trials

    BOUT++ : Recent and current developments

    Get PDF
    BOUT++ is a 3D nonlinear finite-difference plasma simulation code, capable of solving quite general systems of PDEs, but targeted particularly on studies of the edge region of tokamak plasmas. BOUT++ is publicly available, and has been adopted by a growing number of researchers worldwide. Here we present improvements which have been made to the code since its original release, both in terms of structure and its capabilities. Some recent applications of these methods are reviewed, and areas of active development are discussed. We also present algorithms and tools which have been developed to enable creation of inputs from analytic expressions and experimental data, and for processing and visualisation of output results. This includes a new tool Hypnotoad for the creation of meshes from experimental equilibria. Algorithms have been implemented in BOUT++ to solve a range of linear algebraic problems encountered in the simulation of reduced MHD and gyro-fluid models: A preconditioning scheme is presented which enables the plasma potential to be calculated efficiently using iterative methods supplied by the PETSc library, without invoking the Boussinesq approximation. Scaling studies are also performed of a linear solver used as part of physics-based preconditioning to accelerate the convergence of implicit time-integration schemes

    Analytic fluid theory of beam spiraling in high-intensity cyclotrons

    Get PDF
    Using a two-dimensional fluid description, we investigate the nonlinear radial-longitudinal dynamics of intense beams in isochronous cyclotrons in the nonrelativistic limit. With a multiscale analysis separating the time scale associated with the betatron motion and the slower time scale associated with space-charge effects, we show that the longitudinal-radial vortex motion can be understood in the frame moving with the charged beam as the nonlinear advection of the beam by the E×B velocity field, where E is the electric field due to the space charge and B is the external magnetic field. This interpretation provides simple explanations for the stability of round beams and for the development of spiral halos in elongated beams. By numerically solving the nonlinear advection equation for the beam density, we find that it is also in quantitative agreement with results obtained in particle-in-cell simulations
    corecore